人工神经网络和深度学习的定义

2019-06-12 18:40:22
佚名     
技术资料 281

人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学习就是其中的一类算法,我们会单独讨论),重要的人工神经网络算法包括:感知器神经网络(Perceptron Neural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-Organizing Map, SOM)。学习矢量量化(Learning Vector Quantization, LVQ)

深度学习算法是对人工神经网络的发展。 在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼机(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders)。

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开微信扫一扫,即可进行扫码打赏哦!

郑重提醒:部分素材来源于互联网,如果侵犯了您的权利,请及时联络我们更正,谢谢合作,电邮:help@usualtool.com